

OCULAR DRUG DELIVERY: ADVANCES, CHALLENGES, AND FUTURE DIRECTIONS

*Gopa Roy Biswas ^a, Laboni Das ^b, Beduin Mahanti ^c

^{a,b,c} School of Pharmacy, Techno India University, Kolkata – 700091, West Bengal

Abstract

Ocular drug delivery faces significant challenges due to the eye's complex structure and protective barriers that limit effective drug penetration and bioavailability. Conventional delivery routes such as topical, systemic, periocular, and intravitreal administration exhibit varying degrees of therapeutic benefit, although each of them is restricted by different factors like rapid tear clearance, corneal impermeability, systemic toxicity, or procedural invasiveness. These obstructions have restricted the development of advanced ocular drug-delivery technologies to enhance drug residence time, target specificity, and patient compliance. Nanocarrier systems, including liposomes, nanoparticles, and micelles, improve solubility, permeability, and controlled release parameters, while *in situ* gelling systems and drug-eluting contact lenses show sustained, non-invasive delivery options. Ocular implants possess long-term posterior segment therapy, but includes surgical insertion. Innovative techniques like microneedle patches allow for targeted, less invasive distribution, bridging the gap between topical and intravitreal techniques. Despite persistent issues with safety and longevity, gene and cell-based therapies show promise for long-lasting, possibly curative therapy of degenerative and chronic ocular disorders. Future developments for the area will focus on long-acting formulations, personalised ophthalmic medicine, enhanced non-invasive procedures, and smart delivery platforms. When taken as a whole, these developments will reduce long-standing obstacles and revolutionize treatment approaches for ocular illnesses of the anterior and posterior segments.

Keywords: Ocular, Microneedle, Barriers, Periocular, Intravitreal

1. Introduction

Ocular medicine delivery remains one of the most challenging areas of pharmaceutical science due to the unique anatomy and physiology of the eye. Despite being crucial for preserving vision, the protective barriers of the eye severely restrict medication penetration, absorption, and therapeutic efficacy. To address these issues and enhance clinical results, sophisticated drug delivery systems have been developed in recent decades thanks to advancements in materials science, nanotechnology,

and biomedical engineering. This article discusses the principles of administering ocular medications, present approaches, constraints, and new technology that will influence ophthalmic medicine going forward [1].

Anatomy and Physiological Barriers in Ocular Drug Delivery

Drugs' capacity to reach targeted tissues is impacted by the various layers of protection created by the structure of the eye

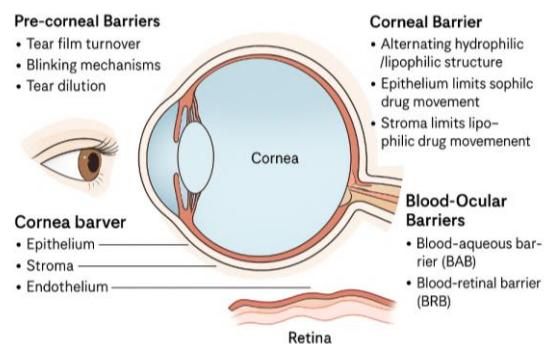


Figure 1: Ocular Barriers

Pre corneal Barriers

In ocular applications one of the main barriers involves quick washout of the administered drug by tear film turnover and blinking of eyes. Simultaneously the effective concentration of the therapeutic agents is decreased by tear dilution. automatically be in the affiliation style. After a section heading, the template will automatically

The lipophilic layer of the corneal epithelium restricts the entrance of hydrophilic drugs. Whereas the hydrophilic layer of Stroma restricts the passage of lipophilic drugs. Therefore this alternating hydrophilic/lipophilic composition has profound effect on drug penetration.

Ocular-Blood Barriers

The blood-aqueous barrier (BAB) and The blood-retinal barrier (BRB) prevent systemic medications from entering the tissues of the eyes. The integrity of the barrier affects how well drugs can reach the eye.

Breaking down the barrier is sometimes a strategy for getting systemic drugs to their targets within the eye.

Conventional Routes of Ocular Drug Delivery [3]

Topical Ocular Drug Delivery

In order for medications administered directly to the surface of the eye to reach intraocular tissues, they must either diffuse through non-corneal channels like the conjunctiva and sclera or pass through the tear film, corneal epithelium, stroma, and endothelium.

Benefits of the above mentioned drug delivery imparts Painless and non-invasive way therefore boosting patient acceptance. In this method self-administration is simple, increasing convenience. It is less expensive than injections or implants with little systemic exposure and minimal systemic negative effects

This route exhibits very low bioavailability (<5%) , caused by rapid tear turnover, blinking, and nasolacrimal drainage, Due to short precorneal residence time frequent doses are required; Inadequate penetration into posterior segment tissues and the potential for formulation washout and discomfort are the restrictions behind this route.

Conventional Routes of Ocular Drug Delivery (Table :1)

Topical Ocular Drug Delivery

The most popular approach for treating anterior segment disorders such conjunctivitis, dry eye syndrome, keratitis, and glaucoma is topical administration, mostly through eye drops, solutions, suspensions, ointments, and gels [4].

When drugs are given directly to the surface of the eye, they must either diffuse through non-corneal channels like the conjunctiva and sclera or pass through the tear film, corneal epithelium, stroma, and endothelium in order to reach intraocular tissues.

Advantages includes Non-invasive and painless application improving convenience and increasing patient acceptance. Due to Low systemic exposure , Low cost and minimal systemic side effects they are well accepted

However they have some limitations also. Very low bioavailability (<5%) is caused by rapid tear turnover, blinking, and nasolacrimal drainage. Short precorneal residence time needs frequent doses to overcome inadequate penetration into posterior segment tissues and the potential for formulation washout .

Some Examples include

Anti-inflammatory agents, Antiglaucoma agents, Lubricants and artificial tears and Anti-infectives (antibiotics, antivirals).

Systemic Drug Delivery

In order to reach ocular tissues via the bloodstream, systemic administration entails administering medications orally, intravenously, intramuscularly, or subcutaneously.

Drug circulates systemically and reaches the eye by crossing the blood-aqueous barrier (BAB) or blood-retinal barrier (BRB) [5].

These drug delivery is useful for treating ocular infections or inflammations associated with systemic disease as well as helpful to deliver drugs when topical penetration is inadequate. It also avoid local irritation caused by topical or intraocular routes.

Limitations include low ocular penetration due to tight junction barriers. Therefore high doses needed to achieve therapeutic ocular levels. It exhibits risk of systemic toxicity (e.g., nephrotoxicity, hepatotoxicity). They are unsuitable for chronic, localized conditions of the anterior eye.

Examples are Systemic antibiotics (e.g., doxycycline) for severe infections, Systemic steroids for uveitis, Anti-VEGF systemic agents in rare retinal conditions.

3. Periocular Drug Delivery [6]

Periocular routes involve injecting drugs around, but not into, the eye. Common periocular administration methods include Subconjunctival injection, Sub-Tenon's injection, Peribulbar injection, Retrobulbar injection.

Drugs diffuse through the sclera and periocular tissues to reach the posterior segment, bypassing some superficial barriers.

Merits of this route includes higher drug concentrations near posterior tissues than topical or systemic delivery. It is less invasive than intravitreal injections and has reduced systemic exposure.

Limitations include variable scleral permeability that lead to unpredictable drug levels. It imparts ocular discomfort and local complications (e.g., chemosis, hemorrhage)

Drug clearance via conjunctival lymphatics can limit sustained exposure. It is not ideal for deep retinal conditions.

Examples are Corticosteroids for posterior uveitis, Antibiotics for periocular infections, Local anesthetics during eye surgery

4. Intravitreal Drug Delivery

Intravitreal injections are the best way to treat posterior segment conditions such diabetic retinopathy, age-related macular degeneration

(AMD), and retinal vein occlusion because they transfer medications directly into the vitreous humor [7].

The drug is injected into the vitreous cavity, achieving high local concentrations that diffuse to the retina and choroid.

It exhibits maximal drug bioavailability in posterior segment tissues, Rapid therapeutic action, bypasses blood-ocular barriers, It is suitable for biologics (e.g., anti-VEGF proteins)

However it is an Invasive procedure hence require sterile technique.

Risks includes Endophthalmitis (infection), Retinal detachment, Vitreous hemorrhage, Cataract formation.

In Situ Gelling Systems

Polymeric solutions that transform into gels upon exposure to physiological triggers (temperature, pH, ions) [9].

Advantages of In Situ Gelling System are Longer residence time, Improved patient compliance, Controlled drug release.

Ocular Implants [10]

Biodegradable or non-biodegradable implants are placed intraocularly. Examples are Dexamethasone implant (Ozurdex®), Fluocinolone implant (Retisert®, Iluvien®). It shows Long-term, sustained delivery and it is useful for chronic retinal diseases. Limitations are Invasive implantation and Risk of cataract and increased intraocular pressure.

Table :1 Summary: Strengths and Weaknesses of Routes in ocular application

Route	Main Target	Advantages		Limitations
Topical	Anterior segment	Non-invasive, convenient		Very low bioavailability, not useful for retinal diseases
Systemic	Severe or systemic-linked ocular conditions	Good for infections/inflammation		High systemic toxicity risk, low ocular penetration
Periocular	Posterior segment	Higher posterior drug levels, less invasive		Variable absorption, limited for deep retina
Intravitreal	Retina & vitreous	Highest bioavailability, effective for retinal diseases		Invasive, risk of complications, repeated dosing

Nanotechnology has revolutionized ocular drug delivery, enhancing penetration and sustained release. Types include Liposomes, Nanoparticles Examples are Anti-VEGF drugs (ranibizumab, afibercept, bevacizumab), Steroid implants or Frequent injections are needed for chronic conditions (monthly or bimonthly). It shows poor patient compliance due to anxiety and discomfort.

injections, Antibiotics and antifungals in endophthalmitis.

(polymeric, lipid-based, inorganic), Nanomicelles, Nanosuspensions. Several benefits are obtained through this system like Improved corneal penetration, Prolonged retention time, Targeted delivery and Reduced dosing frequency.

Contact Lens Drug Delivery

Drug-eluting contact lenses can continuously release medication over time. Benefits include Increased corneal contact and Reduced dosing frequency. Challenges faced are in Maintaining lens clarity, comfort, and release kinetics.

Microneedles

Microneedle patches deliver drugs to specific ocular layers with minimal discomfort [11]. They provide a promising middle ground between topical and intravitreal routes.

Gene and Cell-Based Delivery

Advanced therapies aim for long-term correction rather than repeated dosing. Viral vectors (AAV, lentivirus) deliver genes for sustained production of therapeutic proteins. Cell-based therapy includes Stem-cell therapeutics for retinal regeneration.

Challenges include safety, delivery precision, and durability.

Challenges in Ocular Drug Delivery [12]

Despite progress, numerous obstacles remain:

1. Low Bioavailability

Most drugs fail to reach therapeutic levels, especially in the posterior segment.

2. Drug Stability

Light exposure, enzymes, and tear turnover can degrade drugs.

3. Patient Compliance

Frequent dosing of eye drops can be difficult for elderly patients.

4. Invasiveness

Repeated intravitreal injections pose risks and burden patients.

5. Safety and Toxicity

New materials and nanocarriers require extensive safety evaluation.

Future Directions

Several promising research avenues aim to transform ocular therapeutics:

1. Smart Drug Delivery Systems

Responsive systems that release drugs based on physiological triggers (e.g., pressure, pH, inflammation markers) [13].

2. Sustained and Long-Acting Formulations

Formulations capable of months-long release to minimize clinic visits.

3. Personalized Ophthalmic Medicine [14]

AI-assisted diagnostics and personalized dosing strategies.

4. Improved Non-Invasive Delivery

Advances in ultrasound-mediated delivery, iontophoresis, and laser-based systems [15].

Conclusion

From eye drops to extremely complex nano-engineered devices, implants, and gene therapies, ocular drug delivery has advanced. Modern scientific developments are gradually increasing our capacity to effectively treat both anterior and posterior ocular illnesses, despite the eye's tremendous barriers. In order to provide safer, more effective, and patient-friendly solutions and eventually improve visual health globally, innovation must continue.

References

- [1] R. Gaudana, H.K. Ananthula, A. Parenky, A.K. Mitra, Ocular drug delivery, *AAPS Journal* 12 (2010) 348–360. <https://doi.org/10.1208/s12248-010-9183-3>.
- [2] E.A. Mun, P.W.J. Morrison, A.C. Williams, V.V. Khutoryanskiy, On the barrier properties of the cornea: A microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein, *Molecular Pharmaceutics* 11 (2014) 3556–3564. <https://doi.org/10.1021/mp500332m>.
- [3] S. Ahmed, M.M. Amin, S. Sayed, Ocular drug delivery: a comprehensive review, *AAPS PharmSciTech* 24 (2023) 66. <https://doi.org/10.1208/s12249-023-02516-9>.
- [4] V.K. Yellepeddi, S. Palakurthi, Recent advances in topical ocular drug delivery, *Journal of Ocular Pharmacology and Therapeutics* 32 (2016) 67–82. <https://doi.org/10.1089/jop.2015.0047>.
- [5] L. Liu, X. Liu, Roles of drug transporters in blood-retinal barrier, *Advances in Experimental Medicine and Biology* 1141 (2019) 467–504. https://doi.org/10.1007/978-981-13-7647-4_10.
- [6] S. Raghava, M. Hammond, U.B. Kompella, Periorbital routes for retinal drug delivery, *Expert Opinion on Drug Delivery* 1 (2004) 99–114. <https://doi.org/10.1517/17425247.1.1.99>.
- [7] E.R. Orlova, A.V. Gorobets, D.A. Dorofeev, E.V. Kirilik, I.V. Kozlova, Intravitreal systems for targeted drug delivery to the posterior eye segment: a systematic review, *Russian Open Medical Journal* 11 (2022) e0213. <https://doi.org/10.15275/rusomj.2022.0213>.
- [8] J. Barar, A. Aghanejad, M. Fathi, Y. Omidi, Advanced drug delivery and targeting technologies for the ocular diseases, *BioImpacts* 6 (2016) 49–67. <https://doi.org/10.15171/bi.2016.07>.
- [9] Y. Wu, Y. Liu, X. Li, D. Kebebe, B. Zhang, J. Ren, J. Lu, J. Li, S. Du, Z. Liu, Research progress of in-situ gelling ophthalmic drug delivery system, *Asian Journal of Pharmaceutical Sciences* 14 (2019) 1–15. <https://doi.org/10.1016/j.ajps.2018.04.008>.
- [10] C.T. Catalu, S.L. Istrate, L.M. Voinea, C. Mitulescu, V. Popescu, C. Radu, Ocular implants—methods of ocular reconstruction following radical surgical interventions, *Romanian Journal of Ophthalmology* 62 (2018) 15–23.
- [11] K. Glover, D. Mishra, S. Gade, L.K. Vora, Y. Wu, A.J. Paredes, R.F. Donnelly, T.R.R. Singh, Microneedles for advanced ocular drug delivery, *Advanced Drug Delivery Reviews* 201 (2023) 115082. <https://doi.org/10.1016/j.addr.2023.115082>.
- [12] F.J. Cabrera, D.C. Wang, K. Reddy, G. Acharya, C.S. Shin, Challenges and opportunities for drug delivery to the posterior of the eye, *Drug Discovery Today* 24 (2019) 1679–1684. <https://doi.org/10.1016/j.drudis.2019.05.035>.
- [13] D. Liu, F. Yang, F. Xiong, N. Gu, The smart drug delivery system and its clinical potential, *Theranostics* 6 (2016) 1306–1323. <https://doi.org/10.7150/thno.14858>.
- [14] K. Jin, C. Zhang, Personalized medicine in ophthalmic diseases: challenges and opportunities, *Journal of Personalized Medicine* 13 (2023) 893. <https://doi.org/10.3390/jpm13060893>.
- [15] A. Azagury, L. Khoury, G. Enden, J. Kost, Ultrasound mediated transdermal drug delivery, *Advanced Drug Delivery Reviews* 72 (2014) 127–143. <https://doi.org/10.1016/j.addr.2014.01.007>