

TIU Transactions on Human sciences

Software Analysis of CRISPR/Cas-9 Mediated Genetic Editing of 'Neu' Oncogene in Breast Cancer Manifestation

Aniket De^a, Manav Goenka^a, Arup Ratan Biswas^{a*}

^a Department of Chemistry, Techno India University, EM-4, EM Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India. Email: arup.b@technoindiaeducation.com

Abstract

CRISPR/Cas9 exhibits the genetic modification or alteration or editing by nicking the desired genomic DNA at the target location. The accuracy modification depends on PAM (5'-NGG-3') sequence identified by Cas-9. The target sequence is 20 bases long on a crRNA array. The corrected PAM sequences to the target sequence are implanted in to a plasmid related to its accuracy and precision with no error in the genetic cut or modification. The given target sequence and PAM sequence are matched with the help of the software available like that of CRISTA and ccTOP. The amino acid sequence of the "Neu" (Herceptin) protein obtained from Expassy was subjected to CRISTA and ccTOP. The highest similarity of the SgRNA sequence showed a value of 0.98 to 0.99, counts up to 4 in number. Current manuscript an attempt to use software based correct identification of target sequence as recognized by Cas-9 for the generation of proper matched single-guided RNA sequence without the generation of the off targets formed either due to the repeated bulging of DNA. Furthermore, the characteristic properties of the Neu gene are also explored in order to assess the membrane position, polarity index, and hydropathy index. Thus the manuscript shall provide a glimpse of the software analysis for the corrected target sequence to the corresponding PAM sequence related to the precise genetic modification or alteration.

Key words: CRISPR/Cas9; genetic modification; SgRNA; Neu gene; PAM; CRISTA; and ccTOP

1. Introduction

CRISPR/Cas-9 is precisely used as molecular nicking tools for the purpose of twinkering the genes of interest. This technology allows precisely manipulating any genomic sequence specified by a short stretch of guide RNA, allowing elucidation of gene function involved in disease development and progressions, correction of disease-causing mutations, and inactivation of activated oncogenes or activation of deactivated cancer suppressor genes when utilizing a fusion protein of nuclease-deficient Cas-9 and effector domain [1, 2, 3, 4].

Moreover, this programmable endonuclease technology enables researchers to examine the function of multiple genes at once by simultaneously targeting multiple genomic loci in a single experiment [5], which markedly accelerates our understanding of pathological processes that involve large sets of genes or mutations, such as tumor development. Using single-guide RNA (SgRNA) libraries, CRISPR based genome-wide screens can be leveraged to identify drug-target or disease-resistance genes, such as novel tumor suppressors or oncogenes, and to quickly assess drug targets [6, 7].

In this manuscript we used software for detecting the most corrected target sequence corresponding to the PAM sequence related to the Neu oncogene responsible for mammary cells proliferation. Neu gene is related to herceptin protein that needs to be checked for its polarity, hydropathy, and its position within the cellular membrane. It is indeed a necessity to use the software before designing the PAM sequence; else it may result to generation off target sites and lead to false positive result. Here we employed computational software (ccTOP and CRISTA) for the precise designing of the single-guided RNA sequence, PAM recognition site, corresponding to correct target sequence. The facilitation of the computer aided analysis of the SgRNA sequence and the PAM recognition sites for a specific target sequence that needs to be genetically edited or modified were adopted. At the same time it is necessary to understand the properties of the oncoprotein that is the "Herceptin" protein translated from the "Neu" mRNA sequence. Main properties associated are hydropathy index, the alpha helix, beta-turns, helix wheel, and the transmembrane tendency. Thus we emphasized up on software evaluation and characteristic determination of the Neu oncogene and its related herceptin protein for correct analysis and designing of PAM and SgRNA sequences.

2. Research Method

Adopted methodology involves characteristic determination of herceptin protein in terms of hydropathy using Kyte and Doolittle index, polarity degree, and membrane position utilizing helix-loop wheel approach. Furthermore, approach has been initiated to explore the correct PAM recognition site for the given target sequence so as to generate the corrected single-guided RNA sequence with no off targets generation aided by CRISTA and ccTOP software analysis.

2.1 Elucidation of Protein Properties

a) Elucidation of Protscale Graphs

In order to properly understand and work with the Herceptin protein, we first examined and analyzed the chemical properties of the protein starting from its accession number, and properties such as hydropathy index, structural composition [8] through beta turns, alpha-helix and its transmembrane tendencies.

b) Hydropathy Index

Figure 1: Hydropathy Index

An amino acids hydropathy index is a number reflecting the side chain's hydrophobic or hydrophilic properties [9]. General concept on hydrophobic and hydrophilic nature, involves the presence of specific amino acids that contributes to a protein hydrophobic and hydrophilic character, namely the presence of isoleucine and valine contributes to hydrophobic nature of the protein, whereas presence in number of arginine and lysine contributes to the hydrophilic nature of the given protein.

In this study of herceptin protein more presence of isoleucine and valine were observed suggesting its hydrophobic nature. It is very important in the composition of proteins; hydrophobic amino acids appear to be central (in terms of the 3-dimensional form of the Protein), while hydrophilic amino acids are located on the protein surfaces [10]. We have identified the amino acid sequences that show hydrophobic properties Figure 1.

c) Protein Structure

In a helix coiling, one amino acid carbonyl (C = O) [11] is hydrogen-bonded to the amino (-NH2) terminal of an amino acid that is 4 down the chain resulting to the formation of helical structure (Figures 2 and 3) as evident from the structure retrieved from Prot scale result. Furthermore, we have also found the helix wheel of the amino acid sequence using the Helixator of TCDB [12] and shown it in Figure 5.

d) Transmembrane tendency

A transmembrane protein helps in and out of substances across the membrane and is hydrophobic in nature. To move a substance through the membrane

Figure 3: β turn score

they frequently undergo significant conformation changes [13]. Doolittle and Kyte hydropathy index is used to investigate the transmembrane formation ability and the values plotted in Prot scale (Figure 4).

Figure 4: Spanning between membranes

Figure 5: Helix Loop Wheel

2.2 Software Analysis

(a) Processing of the FASTA File

The FASTA file of the amino acid sequence of "Neu" gene obtained from Expassy, and the nucleotide sequence of homo sapiens genome under the name "Ensembl GRCh38" (Genome Reference Consortium Human Build 38) and the Cas-9 sequence obtained from Streptococcus Pyrogenes were considered and subjected to screening with CRISTA and ccTOP software for generating the SgRNA sequence corresponding to the target sequence.

b) Computational analysis using ccTOP and CRISTA

The computational analysis of the SgRNA and the target sequence were analyzed by the ccTOP and CRISTA software respectively. The reliability of the accuracy in identifying the SgRNA sequence and the target sequence are maximum using ccTOP and CRISTA. The other advantage is that both, takes into account of DNA bulge, since DNA bulge account into maximum number of misleading information. DNA after a period of sequence bulges and if the PAM recognition site falls within the bulging portion of the DNA, the SgRNA sequence and the target sequences are misleaded. Most other software contributes to that misleading information resulting mismatch to sequences.

3. Result

a) CRISTA Output

The output from CRISTA, in the form of Single-guided RNA sequences [14] scoring is based on factors like DNA bulges, loops, the efficacy, off-target cleavage activity, and the final product is presented in the form

of the highest CRISTA score sequence to lowest. Table 1 shows the matching pattern of each SgRNA sequences corresponding to the target DNA sequences with highest to lowest as 0.99 to 0.98.

Table	1:	Matching	scores	obtained	from	CRISTA
analysi	is					

1	sgRNA	DNA site	strand	start position	end position	CRISTA score
1	AAACCCGGAATATCTGGGCCNGG	AAACCCGGAATATCTGGGCCTGG	+	3732	3754	0.99
2	GCGTATAGCCTGACCCTGCANGG	GCGTATAGCCTGACCCTGCAGGG	+	1318	1340	0,99
3	GACCTGCTTTGGCCCGGAAGNGG	GACCTGCTTTGGCCCGGAAGCGG	÷	1722	1744	0.98
4	CCGGAATATCTGACCCCGCANGG	CCGGAATATCTGACCCCGCAGGG	+	3580	3602	0.98

b) ccTOP Output

The nucleotide and the amino acid sequences are split into segments suggesting single guide RNA sequence. It is sorted according to the varying efficacy score that depends on their off-target activity and is presented with its oligo pair extension coordinates, PAM, gene name of the corresponding sequence, and the gene id giving a higher value to the control against the experiment [17]. Based on it analysis 4 best target sequences and corresponding SgRNA sequences have evolved (Figure 6, 7, 8, and 9).

Sequence:	TTCGGCAT	CGCG	ccccmccccc								
Efference have CDICDD store		TCGGCATCGCGCCGCTCGGGG									
Enicacy score by CRISPRAIEL	90 HIGH										
Oligo pair with 5' extension fw	d: TAgGTT	CGGCI	ATCGCGCCGCTCG rev: AAACCGAGC	GGCGCGA	TGCCG	AA					
Oligo pair with 5' substitution fw	d: TAGgTC	GGCAT	FCGCGCCGCTCG rev: AAACCGAGC	GGCGCGA	TGCCG	A					
Coordinates	strand	MM	target seq	PAM	distance		gene name	gene id			
chr3:123291256-123291278	+	4	GCTCATCA [TTGCGCCGCTCG]	CGG	0	E	ADCY5	ENSG00000173175			
chr19:1067075-1067097	500	4	GCTCGGAG [CCGCGCCGCTCG]	CGG	69	Ι	HMHA1	ENSG00000180448			
chr16:31459563-31459585	+	3	GTTCTGCC[TCGCGCAGCTCG]	CGG	0	E	RP11-452L6.5	ENSG0000026026			
chr20:17531128-17531150	+	4	GCCCGGCA[TGCGCCTGCTCG]	AGG	0	E	BFSP1	ENSG00000125864			
	S11.5	4	GCTCGGCG[TCGAGGCGCTCG]	GGG	0	E	NOTUM	ENSG00000185269			
chr17:81961072-81961094				100 101 10101			DDIE	TRICCOCOCOLOGIE			
chr17:81961072-81961094 chr10:79347803-79347825	-	4	GCCCGGCA[CCGCGCCCCCG]	GGG	60	1	PPIF	ENSG00001081/5			
<u>chr17:81961072-81961094</u> <u>chr10:79347803-79347825</u> <u>chr5:32312954-32312976</u>	-	4	GCCCGGCA[CCGCGCCCCCG] GGCCGGCA[TCGCGGCGGTCG]	GGG CGG	60 0	E	MTMR12	ENSG00000150712			

ULS.

Figure 6: Matching score of 0.90

IVIAQIIIIVIII

Previous Next>							
Sequence: A	AAGTGAA	AGTG	CTGGGCAGCGG				
Efficacy score by CRISPRater: 0	89 HIGH						
Oligo pair with 5' extension fw	d: TAggAA	AGTO	AAAGTGCTGGGCAG rev: AAACCTG	CCCAGCA	CTTTCAC	TTT	
Oligo pair with 5' substitution fw	d: TAggAG	TGAA	AGTGCTGGGCAG rev: AAACCTG	CCCAGCA	CTTTCAC	Г	
Top 20 offtarget sites out of 52 (in	icluding on	target	; for full list see xls file)				
Coordinates	strand	MM	target_seq	PAM	distance	gene name	gene id
chr9:89411853-89411875	+	3	AAAGCCCGA [AGTGCTGGGCAG]	TGG	5927 I	SEMA4D	ENSG00000187764
chr5:148915261-148915283	+	4	AGATTGTC [AGTGCTGGGCAG]	AGG	8356 -	SH3TC2	ENSG00000169247
chr6:117660295-117660317	+3	4	AA TT TG <mark>CC</mark> [AGTGCTGGGCAG]	GGG	15185 -	NUS1	ENSG00000153989
chr16:5223208-5223230	+	3	GAAGTGAG [ATTGCTGGGCAG]	AGG	2614	RP11-382N13.2	ENSG00000261811
	+	4	GAAGAGAG [GGTGCTGGGCAG]	AGG	1583 I	PHF21B	ENSG00000056487
chr22:44918793-44918815	1	4	AACCTGGA [AGTCCTGGGCAG]	AGG	41623 -	RP11-288A5.2	ENSG00000279725
chr22:44918793-44918815 chr10:127692917-127692939	T 3			300	002 1	RP11_15R243	ENSG00000228123
chr22:44918793-44918815 chr10:127692917-127692939 chr9:82430965-82430987	+	4	ACAGTGCA [GGGGCTGGGCAG]	AGG	102	IN 11-15024.5	111000000000000000000000000000000000000

T480 out of 596							
< <u>Previous Next></u>							
Sequence:	TGCGGCGC	GCG	CCGCCCTGCGG				
Efficacy score by CRISPRater:	0.89 HIGH						
Oligo pair with 5' extension f	wd: TAggTG	CGGG	CGCCGCGCCGCCCTG rev: AAACCAG	GGCGGCG	CGGCGCC	GCA	
Oligo pair with 5' substitution f	wd: TAggCo	GCG	CCGCGCCGCCCTG rev: AAACCAG	GGCGGCG	CGGCGCC	G	
Top 20 offtarget sites out of 52 (including on	targe	t; for full list see xls file)				
Coordinates	strand	MM	target_seq	PAM	distance	gene name	gene id
chr17:79815350-79815372	+	4	CCCGGGCCC[CGTGCCGCCCTG]	GGG	8080	RP11-353N14.2	ENSG00000262772
chr16:527684-527706	+	3	GTCGGCGC[CGCGCAGCCCTG]	TGG	11 -	CAPN15	ENSG00000103326
		A	TACCACTA [CTCCCCCCCCCTC]	AGG	0	DCDC1	ENSG00000170959
chr11:30894368-30894390	0 TO - 3	7	19009014[c10900900019]				
chr11:30894368-30894390 chr10:63521928-63521950	÷	4	CGCAGCGC [GGCACCGCCCTG]	CGG	78]	JMJD1C	ENSG00000171988
chr11:30894368-30894390 chr10:63521928-63521950 chr9:136203155-136203177	+	4	CGCAGCGC [CGCACCGCCCTG] TGCGCCCCG [CGCGCCCCCTG]	CGG GGG	78 <mark>1</mark> 0 1	IMJD1C LHX3	ENSG00000171988 ENSG00000107187
chr11:30894368-30894390 chr10:63521928-63521950 chr9:136203155-136203177 chr22:50058533-50058555	+++++++++++++++++++++++++++++++++++++++	4 4 2	CGCAGCGC [CGCACCGCCCTG] TGCGCCCCG [CGCGCCCCCCTG] TGCGGCCCC [CGCGCCCCCCTG]	CGG GGG TGG	78 1 0 1 836 -	MJD1C LHX3 MLC1	ENSG00000171988 ENSG00000107187 ENSG00000100427
chr11:30894368-30894390 chr10:63521928-63521950 chr9:136203155-136203177 chr22:50058533-50058555 chr3:51956245-51956267	+++++++++++++++++++++++++++++++++++++++	4 4 2 4	CGCAGCGC [CGCACCGCCCTG] TGCGCCCCC [CGCGCCCCCCTG] TGCCGCCCC [CGCGCCCCCCCTG] TGCCGCCCC [CGCGCCCCCCCTG]	CGG GGG TGG AGG	78 1 0 F 836 - 0 F	I ЛЛЛЛС I LHX3 MLC1 GPR62	ENSG00000171988 ENSG00000107187 ENSG00000100427 ENSG00000180929

Figure 8: Matching score of 0.89

430 out of 350							
< <u>Previous Next></u>							
Sequence: G	CCGGGCGG	CGCCG	CCGGCAGCGG				
Efficacy score by CRISPRater: 0.	89 HIGH						
Oligo pair with 5' extension fwo	: TAgGCC	GGGC	GCGCCGCCGGCAG rev: AAACCTGC	CGGCGGGC	GCGCCCGG	3	
Oligo pair with 5' substitution fwo	: TAGgCG	GGCG	CGCCGCCGGCAG rev: AAACCTGC	CGGCGGGCG	SCGCCCG		
Top 20 offtarget sites out of 52 (in	cluding on	target	; for full list see xls file)				
Coordinates	strand	MM	target_seq	PAM	distance	gene name	gene id
chr18:35581722-35581744	+	2	GCCGGGGGG[AGCCGCCGGCAG]	TGG	0 E	GALNT1	ENSG00000141429
chr12:121467015-121467037	+	3	CCCGGCCG[CCCCCCCGGCAG]	CGG	121 I	KDM2B	ENSG0000089094
hr2:60881732-60881754	+	4	ACTGGGGG [CCCCGCCGGCAG]	AGG	0 E	REL	ENSG00000162924
chr17:51120680-51120702	+	3	GCCCGGGG[CGTCGCCGGCAG]	AGG	0 E	SPAG9	ENSG0000008294
chr3:126380922-126380944	+	3	GCTGGGCT [CGTCGCCGGCAG]	AGG	12088 -	CCDC37-AS1	ENSG00000249833
chrX:49250256-49250278	+	4	GCCTGAGG[AGCCGCCGGCAG]	AGG	0 E	CCDC22	ENSG00000101997
chr4:2250558-2250580	+	4	GGCGGCCC [AGCCGCCGGCAG]	TGG	0 E	MXD4	ENSG00000123933
chr4:1172555-1172577	t	4	AGCGGGAG [CGCGGCCGGCAG]	CGG	0 E	SPON2	ENSG00000159674
chr19:41883360-41883382	+	4	GGCTGGGG[CGCTGCCGGCAG]	CGG	71 I	ARHGEF1	ENSG00000076928
	0.1201	100,000	magaccook [a cookagaccoa c]	ACC	04	DD11 400M0 0	TNICC00000070077

Figure 9: Matching score of 0.89

4. Discussion and Analysis

The research aims at elucidating the SgRNA sequence and the target sequence corresponding to the PAM sequence mediated by the software. We used two software's to validate the result of the SgRNA sequences and the target sequences based on the best fit matching scores. The result showed that score between 0.98 and 0.99 was obtained from both the software (CRISTA and ccTOP). Furthermore we also deciphered the properties of the herceptin protein in terms of its hydropathy index, polarity index, secondary structure, and transmembrane tendency.

Over expression of Neu gene leads to the proliferation of breast lymph nodes and other lymphatic system leading to the proliferation of the mammary duct. The herceptin protein, the biomarker of breast carcinoma has made clinical progress in term of the development of the drug "Tamoxifen" needs to be characterized in the line of the study. Accordingly, "Kyte and Dooliitle" Protscale graph (Figure-1) is used for the elucidation of hydropathy index, evidently showing the hydrophobic character of the protein due to its high content of isoleucine and valine. Polar characteristic of the protein is attributed to its hydrophobic nature. In an helical turn, 3.6 amino acids are present in every turn of the protein secondary structure, (Figures 2 and 3) where the carbonyl carbon (C=O) is bonded to the amino (-NH2) terminal of the amino acids, that looks like a curled structure featuring a helical turn resembling the alpha-helix of the secondary structure of the protein as evident from the data delineated from the helix-loop wheel (Figure-5). The transmembrane tendency of the herceptin protein is due to its hydrophobic character (Figure-4). Presence of isoleucine and valine has made the protein to span between membranes thereby allowing the specific substance to pass across it.

The Homosapiens amino acid sequences and the nucleotide sequences obtained from Expassy were segmented and processed in both the software for the generation of the best fit SgRNA and the target sequence corresponding to PAM recognition site as recognized by the nuclease that is the Cas-9 protein obtained from the Streptococcus Pyrogenes. The score of 0.98 and 0.99 (Figures 6, 7, 8 and 9) provides the 4 best fit target and the SgRNA sequences that further needs to be transfected to a suitable plasmid for identification of the correct expression of the genetically edited Neu gene before going for the

final designing of the SgRNA sequences and the PAM sequence for the specific target sequence with a specific Cas-9 protein corresponding to the PAM recognition site.

5. Future Directions

The manuscript paves the way for further research in the field of CRISPR/Cas-9 for various oncogenes exploring different software studies before going for the final wet lab work. This study gives the glimpse of better understanding the designing of the PAM recognition site sequences, and SgRNA sequences for the corresponding target sequences and the Cas-9 protein. It minimizes the time of screening the proper sequences of SgRNA and PAM. Researchers working in the field of genetic editing with CRISPR/Cas-9 shall be beneficial by the approach undertaken as delineated by the manuscript.

6. Conclusion

Our paper identifies the best sequences of the "Neu" gene that can be targeted with the highest efficacy and lowest off-target cleavage with the CRISPR system and potentially pave way for higher oncological research for human's welfare [16].

References

- Charpentier E, Marraffini L.A. 2014. "Harnessing CRISPR-Cas9 immunity for genetic engineering". Curr. Opin. Microbiol. 19:114–19
- [2] Doudna JA, Charpentier E. 2014. "The new frontier of genome engineering with CRISPR-Cas9". Science 346(6213):1258096
- [3] Hsu PD, Lander ES, Zhang F. 2014. "Development and applications of CRISPR-Cas9 for genome engineering". Cell 157(6):1262–78
- [4] Wang H, La Russa M, Qi LS. 2016. "CRISPR/Cas9 in genome editing and beyond". Annual. Rev. Biochem.85:227–64
- [5] Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. "Multiplex genome engineering using CRISPR/Cas systems". Science 339(6121):819–23
- [6] Dominguez A A, Lim WA, Qi LS. 2016. "Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation". Nat. Rev. Mol. Cell Biol. 17(1):5–15
- [7] Shalem O, Sanjana NE, Zhang F. 2015. "High-throughput functional genomics using CRISPR-Cas9", Nat. Rev. Genet. 16(5):299–311
- [8] Kyte J, Doolittle R F (May 1983). "A simple method for displaying the hydropathic character of a protein". J. Mol. Biol. 157 (1): 105–32. PMID 7108955
- [9] Damodharan, Lakshminarasimhan, and Vasantha Pattabhi. "Hydropathy Analysis to Correlate Structure and Function of Proteins." Biochemical and Biophysical

Research Communications, Academic Press, 17 Sept. 2004.

- [10] Gallo, Elizabeth A., and Samuel H. Gellman. "Hydrogen-Bond-Mediated Folding in Depsipeptide Models of .Beta.-Turns and .Alpha.-Helical Turns." Journal of the American Chemical Society, vol. 115, no. 21, 1993, pp. 9774–9788.
- [11] Saier, Milton H Jr et al. "The Transporter Classification Database (TCDB): recent advances." Nucleic acids research vol. 44,D1 (2016): D372-9.
- [12] Zhao, Gang, and Erwin London. "An Amino Acid 'Transmembrane Tendency' Scale That Approaches the Theoretical Limit to Accuracy for Prediction of Transmembrane Helices: Relationship to Biological Hydrophobicity." Protein Science, vol. 15, no. 8, 2006, pp. 1987–2001.
- [13] Abadi, Shiran, et al. "A Machine Learning Approach for Predicting CRISPR-Cas9 Cleavage Efficiencies and Patterns Underlying Its Mechanism of Action." PLOS Computational Biology, Public Library of Science.
- [14] Stemmer, Manuel, et al. "CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool." PLOS ONE, Public Library of Science.
- [15] Stemmer, Manuel et al. "CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool." PloS one vol. 10, 4 e0124633. 24 Apr. 2015.
- [16] De, A., & Biswas, D. (2020). "Elucidative PAM/Target Sequence for CRISPR/Cas- 9 activity in Breast Cancer Using a Computational Approach". International Journal Of Innovative Science And Research Technology, 5(7), 872-876.
- [17] Annunziato, Stefano, et al. "In Situ CRISPR-Cas9 Base Editing for the Development of Genetically Engineered Mouse Models of Breast Cancer." The EMBO Journal, John Wiley & Cancer. 2020.

Facts for Solutions